C. U. SHAH UNIVERSITY Summer Examination-2022

Subject Name : Topology

Subject Code : 5SC	01TOP1	Branch: M.Sc. (Mathematics)		
Semester: 1	Date: 26/04/2022	Time: 11:00 To 02:00	Marks: 70	

Instructions:

Q-1

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I Attempt the Following questions.

ГОЛ 1	
1117/1	[07]

a b c d	• Let X be topological space and $A, B \subset X$ with $A \subset B$ then prove that $A' \subset B'$. • Prove that every inclusion map is continuous.	(02) (02) (02) (01)
	$A^{'} \subset A.$	
Q-2	Attempt all questions	[14]
a	Let X be a set and \mathcal{B} be a basis for a topology τ on X. Then show that $\tau = \{G: G \text{ is a union of members of } \mathcal{B}\}.$	(05)
b	• Let X be a set. Define $\tau = \{U \subset X \mid \text{either } X - U \text{ is countable or } X - U = X\}$. Prove that τ is topology on X.	(05)
С	Let $X = \{a, b, c\}$. Check whether $\tau = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ is topology on X or not ?	(04)
	OR	
Q-2 a	• Let (X_1, τ_1) and (X_2, τ_2) be topological spaces. Let $X = X_1 \times X_2$. Define	(05)

 $\mathcal{B} = \{U_1 \times U_2 \mid U_1 \in \tau_1, U_2 \in \tau_2\}$. Prove that \mathcal{B} is a basis for X.

- **b.** Let (X, τ) be topological space and Y be a non-empty subset of X. Then prove that the collection $\tau_y = \{U \cap Y \mid U \in \tau\}$ is topology on Y. (05)
- c. Let X be a topological space and $A \subset X$ then $x \notin \overline{A}$ if and only if there (04) exists an open set U containing x that does not intersect A.

Q-3		Attempt all questions.	[14]
	a.	Let (X, τ) be topological space and <i>A</i> and <i>B</i> be two subsets of <i>X</i> . Then prove	(06)
		or disprove the following:	
		i) If $A \subset B$ then $\overline{A} \subset \overline{B}$.	
		ii) $\overline{A \cup B} = \overline{A} \cup \overline{B}$	
		iii) $\overline{A \cap B} = \overline{A} \cap \overline{B}$.	
	b.	Let R and R_1 be the set of real numbers with usual topology and lower limit	(05)
		topology respectively. Let $f: R \to R_l$ defined by $f(x) = x$. Is f continuous	
		function? Justify your answer.	
	c.	Compare Lower Limit topology and Usual topology.	(03)
		OR	
Q-3			
Q-3	a.	Define : Interior point. Let $X = \{a, b, c, d\}$. Define topology on X by	(05)
	a.	$\tau = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}$. If $A = \{a, d\}$ and	(03)
		$B = \{b, c, d\}$ then find A° and B° .	

b. State and prove Pasting Lemma. (05) c. Let (X, τ) be topological space. Then show that any finite intersection of (04) open sets in X is open.

SECTION – II

Q-4		Attempt the Following questions.	[07]
L.	a	Define:Separated Set.	(02)
	b	Define: Lindelof space. Give one example of it.	(02)
	С	True/False: Product of second countable space is second countable.	(01)
	d	Define: Firstcountability axiom.	(01)
	e	State Urysohn's lemma.	(01)
Q-5		Attempt all questions	[14]
-	a.	Define: Path Connected. Show that every path connected space is connected.	(05)
	b.	State and prove Intermediate value theorem.	(05)
	c.	Prove that every subspace of T_2 space is T_2 .	(04)
		OR	
05			

Q-5

a.	Let <i>A</i> be a connected subspace of topological space <i>X</i> . If $A \subset B \subset \overline{A}$ then	(05)
	prove that <i>B</i> is connected.	
b.	Let (X, τ) be disconnected topological space and τ' is finer then τ then prove	(05)
	that (X, τ) is disconnected.	
c.	Let X be a topological space and $A \subset X$. If there is a sequence of points of A	(04)

converges to *x* then show that $x \in \overline{A}$.

Q-6 Attempt all questions [14] **a.** State and prove Heine – Borel Theorem.

(10) **b.** Prove that continuous image of connected space is connected. (04)

a.	Let <i>X</i> , <i>Y</i> be topological spaces and $f: X \rightarrow Y$. Then prove that following are equivalent.	(06)
	(1) f is continuous.	
	(2) for every subset A of X, then $f(\overline{A}) \subset \overline{f(A)}$	
	(3) For every closed set B of Y, $f^{-1}(B)$ is closed in X.	
b.	Prove that every closed subset of compact space is compact.	(04)
c.	Prove that every compact space is locally compact.	(04)

Q-6